1naresh2naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) [e4595cdb-e695-4f47-b13f-15d9ca99d2dc] => Array ( [runtime-id] => e4595cdb-e695-4f47-b13f-15d9ca99d2dc [type] => toll-free-key [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [915cda04-7795-41c5-97a8-c0ad9bd55ab9] => Array ( [runtime-id] => 915cda04-7795-41c5-97a8-c0ad9bd55ab9 [type] => toll-free-key ) ) [credentials] => Array ( [method] => toll-free-key [value] => tf_ipsecsha;b941919bcdfe5766dba80161eac3e14b1ad52ffb ) ) ) 1naresh2nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => FreeToRead [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) [b4d6ba2c-6b4a-4278-983e-dde438dde1c3] => Array ( [runtime-id] => b4d6ba2c-6b4a-4278-983e-dde438dde1c3 [type] => toll-free-key [service-id] => ajnr-ac.highwire.org [access-type] => FreeToRead [privilege] => Array ( [b406d5e7-0270-4325-808c-1e95d12c566b] => Array ( [runtime-id] => b406d5e7-0270-4325-808c-1e95d12c566b [type] => toll-free-key ) ) [credentials] => Array ( [method] => toll-free-key [value] => tf_ipsecsha;b941919bcdfe5766dba80161eac3e14b1ad52ffb ) ) ) PT - JOURNAL ARTICLE AU - Elsheikh, S. AU - Urbach, H. AU - Reisert, M. TI - Intracranial Vessel Segmentation in 3D High-Resolution T1 Black-Blood MRI AID - 10.3174/ajnr.A7700 DP - 2022 Dec 01 TA - American Journal of Neuroradiology PG - 1719--1721 VI - 43 IP - 12 4099 - http://www.ajnr.org/content/43/12/1719.short 4100 - http://www.ajnr.org/content/43/12/1719.full SO - Am. J. Neuroradiol.2022 Dec 01; 43 AB - SUMMARY: We demonstrate the feasibility of intracranial vascular segmentation based on the hypointense signal in non-contrast-enhanced black-blood MR imaging using convolutional neural networks. We selected 37 cases. Qualitatively, we observed no degradation due to stent artifacts, a comparable recognition of an aneurysm recurrence with TOF-MRA, and consistent success in the differentiation of intracranial arteries and veins. False-positive and false-negative results were observed. Quantitatively, our model achieved a promising Dice similarity coefficient of 0.72.BBMRIblack-blood compressed-sensing MRICNNconvolutional neural networksDSCDice similarity coefficient