1naresh
Array
(
[urn:ac.highwire.org:guest:identity] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:identity
[type] => guest
[service-id] => ajnr-ac.highwire.org
[access-type] => Controlled
[privilege] => Array
(
[urn:ac.highwire.org:guest:privilege] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:privilege
[type] => privilege-set
[privilege-set] => GUEST
)
)
[credentials] => Array
(
[method] => guest
)
)
)
1nareshArray
(
[urn:ac.highwire.org:guest:identity] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:identity
[type] => guest
[service-id] => ajnr-ac.highwire.org
[access-type] => FreeToRead
[privilege] => Array
(
[urn:ac.highwire.org:guest:privilege] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:privilege
[type] => privilege-set
[privilege-set] => GUEST
)
)
[credentials] => Array
(
[method] => guest
)
)
)
PT - JOURNAL ARTICLE
AU - Yun, S.Y.
AU - Heo, Y.J.
TI - Accelerated Nonenhanced 3D T1-MPRAGE Using Wave-Controlled Aliasing in Parallel Imaging for Infant Brain Imaging
AID - 10.3174/ajnr.A7680
DP - 2022 Dec 01
TA - American Journal of Neuroradiology
PG - 1797--1801
VI - 43
IP - 12
4099 - http://www.ajnr.org/content/43/12/1797.short
4100 - http://www.ajnr.org/content/43/12/1797.full
SO - Am. J. Neuroradiol.2022 Dec 01; 43
AB - BACKGROUND AND PURPOSE: MPRAGE is the most commonly used sequence for high-resolution 3D T1-weighted imaging in pediatric patients. However, its longer scan time is a major drawback because pediatric patients are prone to motion and frequently require sedation. This study compared nonenhanced accelerated MPRAGE using wave-controlled aliasing in parallel imaging (wave-T1-MPRAGE) with standard MPRAGE in infants.MATERIALS AND METHODS: We retrospectively evaluated 68 infants (mean age, 1.78 [SD. 1.70] months) who underwent nonenhanced standard and wave-T1-MPRAGE. Two neuroradiologists independently assessed each image for image quality, artifacts, myelination degree, and anatomic delineation using the 4-point Likert scale. For diagnostic performance, both observers determined whether nonenhancing lesions were present in the brain parenchyma in 2 types of nonenhanced MPRAGE sequences.RESULTS: Wave-T1-MPRAGE showed a significantly lower mean score and lower interobserver agreement for overall image quality and anatomic delineation than standard MPRAGE (P< .001 for each). However, there were no significant differences between the 2 types of MPRAGE sequences for motion artifacts (P = .90 for observer 1, P = .14 for observer 2) and degree of myelination (P = .16 for observer 1, P = .32 for observer 2). Among the nonenhancing pathologic lesions observed on standard MPRAGE by both observers, only 2 were missed on wave-T1-MPRAGE, and they were very tiny, faint, nonhemorrhagic WM injuries.CONCLUSIONS: Although wave-T1-MPRAGE showed lower overall image quality than standard MPRAGE, the diagnostic performance for nonenhancing parenchymal lesions was comparable. Wave-T1-MPRAGE could be an alternative for diagnosing intracranial lesions in infants, with marked scan time reduction.wave-T1-MPRAGEMPRAGE using wave-controlled aliasing in parallel imagingwave-CAIPIwave-controlled aliasing in parallel imaging