1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => FreeToRead [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) PT - JOURNAL ARTICLE AU - Arbab, Ali Syed AU - Aoki, Shigeki AU - Toyama, Keiji AU - Miyazawa, Nobuhiko AU - Kumagai, Hiroshi AU - Umeda, Takako AU - Arai, Takao AU - Araki, Tsutomu AU - Kabasawa, Hiroyuki AU - Takahashi, Yoshiyuki TI - Quantitative Measurement of Regional Cerebral Blood Flow with Flow-Sensitive Alternating Inversion Recovery Imaging: Comparison with [Iodine 123]-Iodoamphetamin Single Photon Emission CT DP - 2002 Mar 01 TA - American Journal of Neuroradiology PG - 381--388 VI - 23 IP - 3 4099 - http://www.ajnr.org/content/23/3/381.short 4100 - http://www.ajnr.org/content/23/3/381.full SO - Am. J. Neuroradiol.2002 Mar 01; 23 AB - BACKGROUND AND PURPOSE: Flow-sensitive alternating inversion recovery (FAIR) MR imaging is a technique for depicting cerebral perfusion without contrast enhancement. Our purpose was to determine whether quantification at FAIR imaging can be used to assess regional cerebral blood flow (rCBF) in a manner similar to [iodine 123]-iodoamphetamin (123I-IMP) single photon emission CT (SPECT).METHODS: Nine patients with internal carotid or major cerebral arterial stenosis underwent 123I-IMP SPECT and FAIR imaging (single section, different TIs, 1.5 T) at rest and after acetazolamide (Diamox) stress. FAIR and 123I-IMP rCBF values were compared and correlated. Receiver operating characteristic analysis was conducted to detect hypoperfused segments on FAIR images.RESULTS: rCBF values of normally perfused segments were 41.53 and 51.91 mL/100 g/min for pre- and post-acetazolamide 123I-IMP studies, respectively. Corresponding values for pre- and post-acetazolamide FAIR images, respectively, were 46.64 and 59.60 mL/100 g/min with a TI of 1200 milliseconds and 53.23 and 68.17 mL/100 g/min with a TI of 1400 milliseconds. 123I-IMP and FAIR resultswere significantly correlated, with both pre- and post-acetazolamide images. Sensitivity (86%) in detecting hypoperfused segments was significantly higher with post-acetazolamide images (TI, 1400 milliseconds), and specificity (82–85%) and accuracy (80–82%) were higher with all pre- and post-acetazolamide images (all TIs).CONCLUSIONS: The significant correlation, high specificity and accuracy in detecting hypoperfused segments, similar increases in flow on both post-acetazolamide images, and absence of the need for contrast enhancement suggest that FAIR imaging, like nuclear medicine study, is complementary to routine MR imaging in the assessment of cerebral perfusion.