1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => FreeToRead [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) RT Journal Article SR Electronic T1 Dural Arteriovenous Fistulae: Noninvasive Diagnosis with Dynamic MR Digital Subtraction Angiography JF American Journal of Neuroradiology JO Am. J. Neuroradiol. FD American Society of Neuroradiology SP 404 OP 407 VO 23 IS 3 A1 Coley, Stuart C. A1 Romanowski, Charles A. J. A1 Hodgson, Timothy J. A1 Griffiths, Paul D. YR 2002 UL http://www.ajnr.org/content/23/3/404.abstract AB Summary: MR digital subtraction angiography (DSA) is a new diagnostic tool capable of producing dynamic images of the cerebral circulation with the injection of gadopentetate dimeglumine into a peripheral vein. Previous reports have concentrated on its potential as a noninvasive technique for the study of pial arteriovenous malformations. In this report, we present our early findings with MR DSA in the evaluation of intracranial dural arteriovenous fistulae.