1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => FreeToRead
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
RT Journal Article
SR Electronic
T1 Method for Combining Information from White Matter Fiber Tracking and Gray Matter Parcellation
JF American Journal of Neuroradiology
JO Am. J. Neuroradiol.
FD American Society of Neuroradiology
SP 1318
OP 1324
VO 25
IS 8
A1 Park, Hae-Jeong
A1 Kubicki, Marek
A1 Westin, Carl-Fredrik
A1 Talos, Ion-Florin
A1 Brun, Anders
A1 Peiper, Steve
A1 Kikinis, Ron
A1 Jolesz, Ference A.
A1 McCarley, Robert W.
A1 Shenton, Martha E.
YR 2004
UL http://www.ajnr.org/content/25/8/1318.abstract
AB Summary: We introduce a method for combining fiber tracking from diffusion-tensor (DT) imaging with cortical gray matter parcellation from structural high-spatial-resolution 3D spoiled gradient-recalled acquisition in the steady state images. We applied this method to a tumor case to determine the impact of the tumor on white matter architecture. We conclude that this new method for combining structural and DT imaging data is useful for understanding cortical connectivity and the localization of fiber tracts and their relationship with cortical anatomy and brain abnormalities.