1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => FreeToRead
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
PT  - JOURNAL ARTICLE
AU  - Tanaka, Norimitsu
AU  - Abe, Toshi
AU  - Kojima, Kazuyuki
AU  - Nishimura, Hiroshi
AU  - Hayabuchi, Naofumi
TI  - Applicability and Advantages of Flow artifact–insensitive Fluid-attenuated Inversion-recovery MR Sequences for Imaging the Posterior Fossa
DP  - 2000 Jun 01
TA  - American Journal of Neuroradiology
PG  - 1095--1098
VI  - 21
IP  - 6
4099  - http://www.ajnr.org/content/21/6/1095.short
4100  - http://www.ajnr.org/content/21/6/1095.full
SO  - Am. J. Neuroradiol.2000 Jun 01; 21
AB  - Summary: We describe a new sequence, flow artifact–insensitive fluid-attenuated inversion recovery (FAIS-FLAIR), that capitalizes on the advantages of fluid-attenuated inversion recovery (FLAIR) while minimizing FLAIR-related artifacts such as those often encountered in the posterior fossa. Twenty-eight patients with posterior fossa disease underwent FAIS-FLAIR, conventional FLAIR, and spin-echo MR studies, and the findings yielded by the three techniques were compared. In this patient population, postcontrast FAIS-FLAIR imaging was obtained in 20 patients and compared with postcontrast T1-weighted images. The images were assessed for lesion conspicuity by three radiologists. FAIS-FLAIR markedly reduces the inflow artifacts from noninverted CSF on FLAIR images. It does so with and without contrast agent administration, and produces higher lesion conspicuity compared with T1- and T2-weighted spin-echo sequences and conventional FLAIR images of the posterior fossa.