1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => OpenAccess
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
PT  - JOURNAL ARTICLE
AU  - Planetta, P.J.
AU  - Schulze, E.T.
AU  - Geary, E.K.
AU  - Corcos, D.M.
AU  - Goldman, J.G.
AU  - Little, D.M.
AU  - Vaillancourt, D.E.
TI  - Thalamic Projection Fiber Integrity in de novo Parkinson Disease
AID  - 10.3174/ajnr.A3178
DP  - 2012 Jul 05
TA  - American Journal of Neuroradiology
4099  - http://www.ajnr.org/content/early/2012/07/05/ajnr.A3178.short
4100  - http://www.ajnr.org/content/early/2012/07/05/ajnr.A3178.full
AB  - BACKGROUND AND PURPOSE: Postmortem studies of advanced PD have revealed disease-related pathology in the thalamus with an apparent predilection for specific thalamic nuclei. In the present study, we used DTI to investigate in vivo the microstructural integrity of 6 thalamic regions in de novo patients with PD relative to healthy controls. MATERIALS AND METHODS: Forty subjects (20 with early stage untreated PD and 20 age- and sex-matched controls) were studied with a high-resolution DTI protocol at 3T to investigate the integrity of thalamic nuclei projection fibers. Two blinded, independent raters drew ROIs in the following 6 thalamic regions: AN, VA, VL, DM, VPL/VPM, and PU. FA values were then calculated from the projection fibers in each region. RESULTS: FA values were reduced significantly in the fibers projecting from the AN, VA, and DM, but not the VPL/VPM and PU, in the PD group compared with the control group. In addition, there was a reduction in FA values that approached significance in the VL of patients with PD. These findings were consistent across both raters. CONCLUSIONS: The present study provides preliminary in vivo evidence of thalamic projection fiber degeneration in de novo PD and sheds light on the extent of disrupted thalamic circuitry as a result of the disease itself. Abbreviations ANanterior nucleusDMdorsomedial nucleusFAfractional anisotropyPDParkinson diseasePUpulvinarSNsubstantia nigraVAventral anterior nucleusVLventral lateral nucleusVPLventral posterior lateral nucleusVPMventral posterior medial nucleus