1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => FreeToRead
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
RT Journal Article
SR Electronic
T1 Nonsphericity Index and Size Ratio Identify Morphologic Differences between Growing and Stable Aneurysms in a Longitudinal Study of 93 Cases
JF American Journal of Neuroradiology
JO Am. J. Neuroradiol.
FD American Society of Neuroradiology
SP 500
OP 506
DO 10.3174/ajnr.A5531
VO 39
IS 3
A1 Chien, A.
A1 Xu, M.
A1 Yokota, H.
A1 Scalzo, F.
A1 Morimoto, E.
A1 Salamon, N.
YR 2018
UL http://www.ajnr.org/content/39/3/500.abstract
AB BACKGROUND AND PURPOSE: Recent studies have strongly associated intracranial aneurysm growth with increased risk of rupture. Identifying aneurysms that are likely to grow would be beneficial to plan more effective monitoring and intervention strategies. Our hypothesis is that for unruptured intracranial aneurysms of similar size, morphologic characteristics differ between aneurysms that continue to grow and those that do not.MATERIALS AND METHODS: From aneurysms in our medical center with follow-up imaging dates in 2015, ninety-three intracranial aneurysms (23 growing, 70 stable) were selected. All CTA images for the aneurysm diagnosis and follow-up were collected, a total of 348 3D imaging studies. Aneurysm 3D geometry for each imaging study was reconstructed, and morphologic characteristics, including volume, surface area, nonsphericity index, aspect ratio, and size ratio were calculated.RESULTS: Morphologic characteristics were found to differ between growing and stable groups. For aneurysms of <3 mm, nonsphericity index (P < .001); 3–5 mm, nonsphericity index (P < .001); 5–7 mm, size ratio (P = .003); >7 mm, volume (P < .001); surface area (P < .001); and nonsphericity index (P = .002) were significant. Within the anterior communicating artery, the nonsphericity index (P = .008) and, within the posterior communicating artery, size ratio (P = .004) were significant. The nonsphericity index receiver operating characteristic area under the curve was 0.721 for discriminating growing and stable cases on the basis of initial images.CONCLUSIONS: Among aneurysms with similar sizes, morphologic characteristics appear to differ between those that are growing and those that are stable. The nonsphericity index, in particular, was found to be higher among growing aneurysms. The size ratio was found to be the second most significant parameter associated with growth.ACAanterior communicating arteryBA/VAbasilar artery/vertebral arteryICHintracerebral hemorrhageNSInonsphericity indexPcomAposterior communicating artery