1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => FreeToRead [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) PT - JOURNAL ARTICLE AU - Bartha, A.I. AU - Yap, K.R.L. AU - Miller, S.P. AU - Jeremy, R.J. AU - Nishimoto, M. AU - Vigneron, D.B. AU - Barkovich, A.J. AU - Ferriero, D.M. TI - The Normal Neonatal Brain: MR Imaging, Diffusion Tensor Imaging, and 3D MR Spectroscopy in Healthy Term Neonates AID - 10.3174/ajnr.A0521 DP - 2007 Jun 01 TA - American Journal of Neuroradiology PG - 1015--1021 VI - 28 IP - 6 4099 - http://www.ajnr.org/content/28/6/1015.short 4100 - http://www.ajnr.org/content/28/6/1015.full SO - Am. J. Neuroradiol.2007 Jun 01; 28 AB - BACKGROUND AND PURPOSE: There is a lack of normative diffusion tensor imaging (DTI) and 3D MR spectroscopy (MRS) data in the early neonatal period. We report quantitative values from a cohort of healthy term neonates to serve as baseline data for studies assessing brain development and injury.MATERIALS AND METHODS: Sixteen healthy term neonates (median age, 7 days) were studied with spin-echo T1- and T2-weighted MR imaging, DTI, and 3D point-resolved spectroscopy sequence (PRESS) MRS without sedation on a 1.5T scanner. Average diffusivity (Dav), fractional anisotropy (FA), eigenvalues (EV), and metabolite ratios (N-acetylaspartate [NAA]/choline, lactate/choline) were calculated by automated processing in 7 brain regions. Neurodevelopment was assessed by blinded and validated neuromotor examinations and the Bayley II test at 3 and 14 months.RESULTS: Two neonates were excluded from the cohort: one had brain injury on T2-weighted imaging, and the other, who had normal MR imaging, showed mildly delayed cognition at 14 months. The mean DTI values of the remaining 14 neonates were between these ranges: Dav=0.98–1.48 10−3 mm2/s, FA=0.14–0.30, EV1=1.21–1.88, EV2=0.95–1.46, and EV3=0.77–1.24 (all × 10−3 mm2/s). The NAA/choline ratio ranged between 0.58 and 0.73, and minimal lactate/choline (<0.15) could be detected in each neonate. All neonates exhibited clinically normal neuromotor status.CONCLUSIONS: Our study demonstrates the feasibility of obtaining high-quality quantifiable MR data in nonsedated healthy term neonates that can be used to study normal early brain development and as control data in studies of perinatal brain injury.