1naresh
Array
(
[urn:ac.highwire.org:guest:identity] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:identity
[type] => guest
[service-id] => ajnr-ac.highwire.org
[access-type] => Controlled
[privilege] => Array
(
[urn:ac.highwire.org:guest:privilege] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:privilege
[type] => privilege-set
[privilege-set] => GUEST
)
)
[credentials] => Array
(
[method] => guest
)
)
)
1nareshArray
(
[urn:ac.highwire.org:guest:identity] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:identity
[type] => guest
[service-id] => ajnr-ac.highwire.org
[access-type] => FreeToRead
[privilege] => Array
(
[urn:ac.highwire.org:guest:privilege] => Array
(
[runtime-id] => urn:ac.highwire.org:guest:privilege
[type] => privilege-set
[privilege-set] => GUEST
)
)
[credentials] => Array
(
[method] => guest
)
)
)
RT Journal Article
SR Electronic
T1 Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network
JF American Journal of Neuroradiology
JO Am. J. Neuroradiol.
FD American Society of Neuroradiology
DO 10.3174/ajnr.A6436
A1 Sommer, K.
A1 Saalbach, A.
A1 Brosch, T.
A1 Hall, C.
A1 Cross, N.M.
A1 Andre, J.B.
YR 2020
UL http://www.ajnr.org/content/early/2020/02/13/ajnr.A6436.abstract
AB BACKGROUND AND PURPOSE: Motion artifacts are a frequent source of image degradation in the clinical application of MR imaging (MRI). Here we implement and validate an MRI motion-artifact correction method using a multiscale fully convolutional neural network.MATERIALS AND METHODS: The network was trained to identify motion artifacts in axial T2-weighted spin-echo images of the brain. Using an extensive data augmentation scheme and a motion artifact simulation pipeline, we created a synthetic training dataset of 93,600 images based on only 16 artifact-free clinical MRI cases. A blinded reader study using a unique test dataset of 28 additional clinical MRI cases with real patient motion was conducted to evaluate the performance of the network.RESULTS: Application of the network resulted in notably improved image quality without the loss of morphologic information. For synthetic test data, the average reduction in mean squared error was 41.84%. The blinded reader study on the real-world test data resulted in significant reduction in mean artifact scores across all cases (P < .03).CONCLUSIONS: Retrospective correction of motion artifacts using a multiscale fully convolutional network is promising and may mitigate the substantial motion-related problems in the clinical MRI workflow.FCNfully convolutional neural networkMSEmean squared errorSSIMstructural similarity index