1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => OpenAccess [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) PT - JOURNAL ARTICLE AU - Desikan, R.S. AU - Cabral, H.J. AU - Fischl, B. AU - Guttmann, C.R.G. AU - Blacker, D. AU - Hyman, B.T. AU - Albert, M.S. AU - Killiany, R.J. TI - Temporoparietal MR Imaging Measures of Atrophy in Subjects with Mild Cognitive Impairment That Predict Subsequent Diagnosis of Alzheimer Disease AID - 10.3174/ajnr.A1397 DP - 2009 Mar 01 TA - American Journal of Neuroradiology PG - 532--538 VI - 30 IP - 3 4099 - http://www.ajnr.org/content/30/3/532.short 4100 - http://www.ajnr.org/content/30/3/532.full SO - Am. J. Neuroradiol.2009 Mar 01; 30 AB - BACKGROUND AND PURPOSE: Mild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer disease (AD). Our goal was to determine if specific temporoparietal regions can predict the time to progress from MCI to AD.MATERIALS AND METHODS: MR images from 129 individuals with MCI were analyzed to identify the volume of 14 neocortical and 2 non-neocortical brain regions, comprising the temporal and parietal lobes. In addition, 3 neuropsychological test scores were included to determine whether they would provide independent information. After a mean follow-up time of 5 years, 44 of these individuals had progressed to a diagnosis of AD.RESULTS: Cox proportional hazards models demonstrated significant effects for 6 MR imaging regions with the greatest differences being the following: the entorhinal cortex (hazard ratio [HR] = 0.54, P < .001), inferior parietal lobule (hazard ratio [HR] = 0.64, P < .005), and middle temporal gyrus (HR = 0.64, P < .004), indicating decreased risk with larger volumes. A multivariable model showed that a combination of the entorhinal cortex (HR = 0.60, P < .001) and the inferior parietal lobule (HR = 0.62, P < .01) was the best predictor of time to progress to AD. A multivariable model reiterated the importance of including both MR imaging and neuropsychological variables in the final model.CONCLUSIONS: These findings reaffirm the importance of the entorhinal cortex and present evidence for the importance of the inferior parietal lobule as a predictor of time to progress from MCI to AD. The inclusion of neuropsychological performance in the final model continues to highlight the importance of using these measures in a complementary fashion.