1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => OpenAccess
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
PT  - JOURNAL ARTICLE
AU  - Sannananja, B.
AU  - Zhu, C.
AU  - Colip, C.G.
AU  - Somasundaram, A.
AU  - Ibrahim, M.
AU  - Khrisat, T.
AU  - Mossa-Basha, M.
TI  - Image-Quality Assessment of 3D Intracranial Vessel Wall MRI Using DANTE or DANTE-CAIPI for Blood Suppression and Imaging Acceleration
AID  - 10.3174/ajnr.A7531
DP  - 2022 Jun 01
TA  - American Journal of Neuroradiology
PG  - 837--843
VI  - 43
IP  - 6
4099  - http://www.ajnr.org/content/43/6/837.short
4100  - http://www.ajnr.org/content/43/6/837.full
SO  - Am. J. Neuroradiol.2022 Jun 01; 43
AB  - BACKGROUND AND PURPOSE: 3D intracranial vessel wall MRI techniques are time consuming and prone to artifacts, especially flow artifacts. Our aim was to compare the image quality of accelerated and flow-suppressed 3D intracranial vessel wall MR imaging techniques relative to conventional acquisitions.MATERIALS AND METHODS: Consecutive patients undergoing MR imaging had conventional postcontrast 3D T1-sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE) and either postcontrast delay alternating with nutation for tailored excitation (DANTE) flow-suppressed or DANTE–controlled aliasing in parallel imaging results in higher acceleration (CAIPI) flow-suppressed and accelerated T1-SPACE sequences performed. The sequences were evaluated using 4- or 5-point Likert scales for overall image quality, SNR, extent/severity of artifacts, motion, blood suppression, sharpness, and lesion assessment. Quantitative assessment of lumen and wall-to-lumen contrast ratios was performed.RESULTS: Eighty-nine patients were included. T1-DANTE-SPACE had significantly better qualitative ratings relative to T1-SPACE for image quality, SNR, artifact impact, arterial and venous suppression, and lesion assessment (P < .001 for each, respectively), with the exception of motion (P = .16). T1-DANTE-CAIPI-SPACE had significantly better image quality, lesion assessment, arterial and venous blood suppression, less artifact impact, and less motion compared with T1-SPACE (P < .001 for each, respectively). The SNR was higher with T1-SPACE compared with T1-DANTE-CAIPI-SPACE (P < .001). T1-DANTE-CAIPI-SPACE showed significantly worse lumen (P = .005) and wall-to-lumen contrast ratios (P = .001) compared with T1-SPACE, without a significant difference between T1-SPACE and T1-DANTE-SPACE. T1-DANTE-CAIPI-SPACE scan time was 5:11 minutes compared with 8:08 and 8:41 minutes for conventional T1-SPACE and T1-DANTE-SPACE, respectively.CONCLUSIONS: Accelerated postcontrast T1-DANTE-CAIPI-SPACE had fewer image artifacts, less motion, improved blood suppression, and a shorter scan time, but lower qualitative and quantitative SNR ratings relative to conventional T1-SPACE intracranial vessel wall MR imaging. Postcontrast T1-DANTE-SPACE had superior SNR, blood suppression, higher image quality, and fewer image artifacts, but slightly longer scan times relative to T1-SPACE.CAIPIcontrolled aliasing in parallel imaging results in higher accelerationDANTEdelay alternating with nutation for tailored excitationIVWintracranial vessel wall MR imagingMSDEmotion-sensitized driven-equilibriumSPACEsampling perfection with application-optimized contrasts by using different flip angle evolution