1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => OpenAccess [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) PT - JOURNAL ARTICLE AU - Wentland, A.L. AU - Wieben, O. AU - Korosec, F.R. AU - Haughton, V.M. TI - Accuracy and Reproducibility of Phase-Contrast MR Imaging Measurements for CSF Flow AID - 10.3174/ajnr.A2039 DP - 2010 Aug 01 TA - American Journal of Neuroradiology PG - 1331--1336 VI - 31 IP - 7 4099 - http://www.ajnr.org/content/31/7/1331.short 4100 - http://www.ajnr.org/content/31/7/1331.full SO - Am. J. Neuroradiol.2010 Aug 01; 31 AB - BACKGROUND AND PURPOSE: PCMR, widely used for the evaluation of blood flow, has been adopted for the assessment of cerebrospinal fluid flow in a variety of disorders. The purpose of this study was to evaluate the accuracy and reproducibility of 2 fast PCMR techniques for measuring CSF flow. MATERIALS AND METHODS: Velocities were calculated from RPC and CPC images of fluid flowing in a tube at a constant velocity. Error and the COV were computed for average and peak velocities. Additionally, measurements of sinusoidally fluctuating flow and of CSF flow in 5 healthy volunteers were acquired with the RPC and CPC acquisitions. RESULTS: For constant velocity experiments, error for the RPC and CPC acquisitions averaged +1.15% and +8.91% and COVs averaged 1.29% and 3.01%, respectively. For peak velocities of ≥12.6 cm/s, error with RPC or CPC ranged from −33.3% to −36.9% and COVs were 0%–4% for RPC and 1%–7% for CPC. For peak velocities of ≤6.4 cm/s, RPC and CPC overestimated velocity by >250%. For fluctuating flow, both acquisitions showed similar flow patterns. In volunteer studies, peak systolic and diastolic velocities were not significantly different. CONCLUSIONS: The RPC and CPC sequences measure velocities on the order of CSF flow with an average error of ≥9%. The 2 techniques significantly overestimate peak velocities <6.4 cm/s, with maximum errors of 209% and 276% and maximum COVs of 100% and 73% for the RPC and CPC sequences, respectively. Measurements of CSF velocities in human volunteers and of sinusoidally fluctuating phantom velocities did not differ significantly between the 2 techniques. COVcoefficient of variationCPCCartesian-based phase contrastPCMRphase-contrast MR imagingQAquality assuranceRBWreceiver bandwidthRPCradially sampled phase contrastSNRsignal intensity–to-noise ratioVENCvelocity encodingvpsviews per segment