1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) )Table 2:Predictive performance of 2 machine learning models for the identification of medulloblastoma molecular subgroups
MRI Dataset/Targeted Subgroup AUC with Double 10-Fold Cross-Validation AUC with 3-Dataset Cross-Validation T1 SHH 0.67 0.73 WNT 0.56 0.47 Group 3 0.40 0.54 Group 4 0.79 0.76 T2 SHH 0.70 0.66 WNT 0.63 0.72 Group 3 0.51 0.57 Group 4 0.54 0.59 T1 + T2 SHH 0.79 0.70 WNT 0.45 0.45 Group 3 0.70 0.39 Group 4 0.83 0.80