1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)
1naresh
Array
(
    [urn:ac.highwire.org:guest:identity] => Array
        (
            [runtime-id] => urn:ac.highwire.org:guest:identity
            [type] => guest
            [service-id] => ajnr-ac.highwire.org
            [access-type] => Controlled
            [privilege] => Array
                (
                    [urn:ac.highwire.org:guest:privilege] => Array
                        (
                            [runtime-id] => urn:ac.highwire.org:guest:privilege
                            [type] => privilege-set
                            [privilege-set] => GUEST
                        )

                )

            [credentials] => Array
                (
                    [method] => guest
                )

        )

)

Table 2:

Predictive performance of 2 machine learning models for the identification of medulloblastoma molecular subgroups

MRI Dataset/Targeted SubgroupAUC with Double 10-Fold Cross-ValidationAUC with 3-Dataset Cross-Validation
T1
    SHH0.670.73
    WNT0.560.47
    Group 30.400.54
    Group 40.790.76
T2
    SHH0.700.66
    WNT0.630.72
    Group 30.510.57
    Group 40.540.59
T1 + T2
    SHH0.790.70
    WNT0.450.45
    Group 30.700.39
    Group 40.830.80