1naresh
Array ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) ) 1nareshArray ( [urn:ac.highwire.org:guest:identity] => Array ( [runtime-id] => urn:ac.highwire.org:guest:identity [type] => guest [service-id] => ajnr-ac.highwire.org [access-type] => Controlled [privilege] => Array ( [urn:ac.highwire.org:guest:privilege] => Array ( [runtime-id] => urn:ac.highwire.org:guest:privilege [type] => privilege-set [privilege-set] => GUEST ) ) [credentials] => Array ( [method] => guest ) ) )Table 2:[18F] FDG-PET/CT characteristics and selected texture parameters differentiating lymph node characterization in patients with HIV infection (group 1 vs 2)
Texture Parameter Benign Nodes (n = 9) Malignant Nodes (n = 13) P Valuea Cutoff AUCb (GLIMMROC) Mean SD Mean SD Node characteristics Size (cm) 1.400 0.300 1.892 0.690 .024 <2.0 0.752 Volume (cm3) 0.547 0.363 2.535 2.218 .007 >0.76 0.889 SUVmax 5.111 1.610 8.562 3.886 .042 >5.5 0.803 Histogram Mean 624.4 74.6 735.3 75.2 .017 >683.3 0.872 Median 774.0 217.9 1013.1 71.2 .018 >877.8 0.872 Second SD 93.76 28.70 59.85 19.19 .017 <76.3 0.872 Range 273.7 82.9 175.4 54.5 .017 <232.7 0.863 Geometric mean 199.6 44.7 272.8 63.8 .032 >237.3 0.829 SD 5 81.9 29.4 16.8 19.2 .018 <62.89 0.872 SD 9 99.7 49.3 19.5 17.3 .017 <63.16 0.889 GLCM Contrast 113.1 20.2 84.1 16.9 .009 <97.7 0.889 Energy 0.036 0.019 0.081 0.047 .025 >0.047 0.812 Homogeneity 0.451 0.065 0.542 0.069 .020 >0.498 0.821 GLRL SRE 0.177 0.007 0.157 0.009 <.001 <0.164 0.966c LRE 0.197 0.010 0.173 0.012 .001 <0.186 0.957 GLN 0.183 0.009 0.160 0.011 .001 <0.172 0.949 RLN 0.196 0.010 0.173 0.012 .002 <0.184 0.932 LRHGE 224.6 51.8 300.0 68.7 .035 >261.8 0.863
Note:—GLIMMROC indicates generalized linear mixed model receiver operating characteristic.
↵a Indicates a significant difference by the mixed linear regression model (Proc MIXED) to adjust the variance-covariance matrix among multiple values recorded for each patient (P < .05).
↵b Using the generalized linear mixed model (GLIMMROC).
↵c The highest AUC among 41 texture features.