Research ArticleBRAIN
Open Access
Hypercapnia-Induced Cerebral Hyperperfusion: An Underrecognized Clinical Entity
J.M. Pollock, A.R. Deibler, C.T. Whitlow, H. Tan, R.A. Kraft, J.H. Burdette and J.A. Maldjian
American Journal of Neuroradiology February 2009, 30 (2) 378-385; DOI: https://doi.org/10.3174/ajnr.A1316
J.M. Pollock
A.R. Deibler
C.T. Whitlow
H. Tan
R.A. Kraft
J.H. Burdette

REFERENCES
- ↵Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 1984;101:161–211
- ↵Faraci FM, Breese KR, Heistad DD. Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide. Stroke 1994;25:1679–83
- ↵Madden JA. The effect of carbon dioxide on cerebral arteries. Pharmacol Ther 1993;59:229–50
- ↵Claassen JA, Zhang R, Fu Q, et al. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing. J Appl Physiol 2007;102:870–77
- ↵
- ↵Brian JE, Jr. Carbon dioxide and the cerebral circulation. Anesthesiology 1998;88:1365–86
- ↵de Boorder MJ, Hendrikse J, van der Grond J. Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 2004;35:1350–54
- ↵Kastrup A, Li TQ, Glover GH, et al. Cerebral blood flow-related signal changes during breath-holding. AJNR Am J Neuroradiol 1999;20:1233–38
- Vovk A, Cunningham DA, Kowalchuk JM, et al. Cerebral blood flow responses to changes in oxygen and carbon dioxide in humans. Can J Physiol Pharmacol 2002;80:819–27
- ↵Ito H, Kanno I, Ibaraki M, et al. Effect of aging on cerebral vascular response to PaCO2 changes in humans as measured by positron emission tomography. J Cereb Blood Flow Metab 2002;22:997–1003
- ↵Noth U, Kotajima F, Deichmann R, et al. Mapping of the cerebral vascular response to hypoxia and hypercapnia using quantitative perfusion MRI at 3 T. NMR Biomed 2008;464–72
- ↵
- Raichle ME, Plum F. Hyperventilation and cerebral blood flow. Stroke 1972;3:566–75
- ↵Poulin MJ, Liang PJ, Robbins PA. Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol 1996;81:1084–95
- ↵Ito H, Yokoyama I, Iida H, et al. Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography. J Cereb Blood Flow Metab 2000;20:1264–70
- ↵Pfefferkorn T, von Stuckrad-Barre S, Herzog J, et al. Reduced cerebrovascular CO(2) reactivity in CADASIL: A transcranial Doppler sonography study. Stroke 2001;32:17–21
- ↵Ito H, Kanno I, Ibaraki M, et al. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2003;23:665–70
- ↵Pattinson KT, Rogers R, Mayhew SD, et al. Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia. J Cereb Blood Flow Metab 2007;27:414–23
- Poeppel TD, Terborg C, Hautzel H, et al. Cerebral haemodynamics during hypo- and hypercapnia: determination with simultaneous 15O-butanol-PET and transcranial Doppler sonography. Nuklearmedizin 2007;46:93–100
- ↵Shen Q, Ren H, Duong TQ. CBF, BOLD, CBV, and CMRO(2) fMRI signal temporal dynamics at 500-msec resolution. J Magn Reson Imaging 2008;27:599–606
- ↵Kulikov VP, Dicheskul ML, Dobrynina KA. [Venous haemodynamics response to hypercapnia]. Ross Fiziol Zh Im I M Sechenova 2007;93:852–59
- ↵Kastrup A, Kruger G, Neumann-Haefelin T, et al. Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO(2) and breath holding. Magn Reson Imaging 2001;19:13–20
- ↵Laffey JG, Kavanagh BP. Hypocapnia. N Engl J Med 2002;347:43–53
- ↵Luh WM, Wong EC, Bandettini PA, et al. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246–54
- ↵Yang Y, Frank JA, Hou L, et al. Multislice imaging of quantitative cerebral perfusion with pulsed arterial spin labeling. Magn Reson Med 1998;39:825–32
- ↵
- ↵Friston KJ, Holmes AP, Worsley KJ, et al. Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 1994;2:189–210
- ↵Deibler AR, Pollock JM, Kraft RA, et al. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 2008;29:1228–34
- ↵Markus HS. Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry 2004;75:353–61
- ↵Kastrup A, Happe V, Hartmann C, et al. Gender-related effects of indomethacin on cerebrovascular CO2 reactivity. J Neurol Sci 1999;162:127–32
- ↵Wang X, Wu J, Li L, et al. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res 2003;92:1225–32
- ↵
- ↵Warner DS, Turner DM, Kassell NF. Time-dependent effects of prolonged hypercapnia on cerebrovascular parameters in dogs: acid-base chemistry. Stroke 1987;18:142–49
- ↵Hino JK, Short BL, Rais-Bahrami K, et al. Cerebral blood flow and metabolism during and after prolonged hypercapnia in newborn lambs. Crit Care Med 2000;28:3505–10
- ↵
- ↵Vantanajal JS, Ashmead JC, Anderson TJ, et al. Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans. J Appl Physiol 2007;102:87–93
- Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002;22:1042–53
- ↵Raichle ME, Posner JB, Plum F. Cerebral blood flow during and after hyperventilation. Arch Neurol 1970;23:394–403
- ↵
- Pantano P, Baron JC, Lebrun-Grandie P, et al. Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984;15:635–41
- ↵
- ↵Yamamoto M, Meyer JS, Sakai F, et al. Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol 1980;37:489–96
- ↵Miller JD, Smith RR, Holaday HR. Carbon dioxide reactivity in the evaluation of cerebral ischemia. Neurosurgery 1992;30:518–21
- ↵Kastrup A, Dichgans J, Niemeier M, et al. Changes of cerebrovascular CO2 reactivity during normal aging. Stroke 1998;29:1311–14
- ↵Epstein SK, Singh N. Respiratory acidosis. Respir Care 2001;46:366–83
- Levasseur JE, Wei EP, Kontos HA, et al. Responses of pial arterioles after prolonged hypercapnia and hypoxia in the awake rabbit. J Appl Physiol 1979;46:89–95
- Skinhoj E. CBF adaption in man to chronic hypo- and hypercapnia and its relation to CSF pH. Scand J Clin Lab Invest Suppl 1968;102:VIII:A
- Lassen NA. Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest 1968;22:247–51
- ↵Clivati A, Ciofetti M, Cavestri R, et al. Cerebral vascular responsiveness in chronic hypercapnia. Chest 1992;102:135–38
- ↵Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 2008;29:663–67
- ↵Floyd TF, Clark JM, Gelfand R, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003;95:2453–61
- ↵Lu H, Clingman C, Golay X, et al. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52:679–82
- ↵Zhernovoi AI, Sharshina LM. [Effects of hematocrit on blood proton relaxation time]. Med Tekh 1997;33–34
- ↵Deibler AR, Pollock JM, Kraft RA, et al. Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 2008;29:1235–41
- ↵Iadecola C, Zhang F. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia. Am J Physiol 1994;266:R546–52
- ↵Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol 1964;206:25–35
- ↵Raichle ME, Stone HL. Cerebral blood flow autoregulation and graded hypercapnia. Eur Neurol 1971;6:1–5
- ↵Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med 2007;35:568–78
- ↵
- ↵Petruk KC, Weir BK, Overton TR, et al. The effect of graded hypocapnia and hypercapnia on regional cerebral blood flow and cerebral vessel caliber in the rhesus monkey: study of cerebral hemodynamics following subarachnoid hemorrhage and traumatic internal carotid spasm. Stroke 1974;5:230–36
- ↵Kirsch DB, Jozefowicz RF. Neurologic complications of respiratory disease. Neurol Clin 2002;20:247–64
- ↵
In this issue
Advertisement
Hypercapnia-Induced Cerebral Hyperperfusion: An Underrecognized Clinical Entity
J.M. Pollock, A.R. Deibler, C.T. Whitlow, H. Tan, R.A. Kraft, J.H. Burdette, J.A. Maldjian
American Journal of Neuroradiology Feb 2009, 30 (2) 378-385; DOI: 10.3174/ajnr.A1316
Jump to section
Related Articles
- No related articles found.
Cited By...
- Hypercapnia-induced cerebral oedema in a patient with COPD exacerbation: a rare and under-recognised entity
- Is hypercapnia associated with poor prognosis in chronic obstructive pulmonary disease? A long-term follow-up cohort study
- Whole-Brain N-Acetylaspartate Concentration Is Preserved during Mild Hypercapnia Challenge
- Republished: Society for Neuroscience in Anesthesiology and Critical Care Expert Consensus Statement: Anesthetic Management of Endovascular Treatment for Acute Ischemic Stroke
- Novel MRI Approaches for Assessing Cerebral Hemodynamics in Ischemic Cerebrovascular Disease
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement