Index by author
Edwards, M.S.B.
- EDITOR'S CHOICEPediatricsYou have accessDeep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional StudyJ.L. Quon, W. Bala, L.C. Chen, J. Wright, L.H. Kim, M. Han, K. Shpanskaya, E.H. Lee, E. Tong, M. Iv, J. Seekins, M.P. Lungren, K.R.M. Braun, T.Y. Poussaint, S. Laughlin, M.D. Taylor, R.M. Lober, H. Vogel, P.G. Fisher, G.A. Grant, V. Ramaswamy, N.A. Vitanza, C.Y. Ho, M.S.B. Edwards, S.H. Cheshier and K.W. YeomAmerican Journal of Neuroradiology September 2020, 41 (9) 1718-1725; DOI: https://doi.org/10.3174/ajnr.A6704
This study cohort comprised 617 children (median age, 92 months; 56% males) from 5 pediatric institutions with posterior fossa tumors: diffuse midline glioma of the pons, medulloblastoma, pilocytic astrocytoma, and ependymoma. There were 199 controls. Tumor histology served as ground truth except for diffuse midline glioma of the pons, which was primarily diagnosed by MR imaging. A modified ResNeXt-50-32x4d architecture served as the backbone for a multitask classifier model, using T2-weighted MRI as input to detect the presence of tumor and predict tumor class. Model tumor detection accuracy exceeded an AUC of 0.99 and was similar to that of 4 radiologists. Model tumor classification accuracy was 92% with an F1 score of 0.80. The model was most accurate at predicting diffuse midline glioma of the pons, followed by pilocytic astrocytoma and medulloblastoma. Ependymoma prediction was the least accurate.
Eisinger, R.S.
- Adult BrainOpen AccessNeuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain ConnectomicsE.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen, V.M. Holanda and S.S. GrewalAmerican Journal of Neuroradiology September 2020, 41 (9) 1558-1568; DOI: https://doi.org/10.3174/ajnr.A6693
Elliott, C.
- Adult BrainYou have accessPatterning Chronic Active Demyelination in Slowly Expanding/Evolving White Matter MS LesionsC. Elliott, D.L. Arnold, H. Chen, C. Ke, L. Zhu, I. Chang, E. Cahir-McFarland, E. Fisher, B. Zhu, S. Gheuens, M. Scaramozza, V. Beynon, N. Franchimont, D.P. Bradley and S. BelachewAmerican Journal of Neuroradiology September 2020, 41 (9) 1584-1591; DOI: https://doi.org/10.3174/ajnr.A6742
Escalard, S.
- InterventionalYou have accessFusion Image Guidance for Supra-Aortic Vessel Catheterization in Neurointerventions: A Feasibility StudyA. Feddal, S. Escalard, F. Delvoye, R. Fahed, J.P. Desilles, K. Zuber, H. Redjem, J.S. Savatovsky, G. Ciccio, S. Smajda, M. Ben Maacha, M. Mazighi, M. Piotin and R. BlancAmerican Journal of Neuroradiology September 2020, 41 (9) 1663-1669; DOI: https://doi.org/10.3174/ajnr.A6707
Fahed, R.
- InterventionalYou have accessFusion Image Guidance for Supra-Aortic Vessel Catheterization in Neurointerventions: A Feasibility StudyA. Feddal, S. Escalard, F. Delvoye, R. Fahed, J.P. Desilles, K. Zuber, H. Redjem, J.S. Savatovsky, G. Ciccio, S. Smajda, M. Ben Maacha, M. Mazighi, M. Piotin and R. BlancAmerican Journal of Neuroradiology September 2020, 41 (9) 1663-1669; DOI: https://doi.org/10.3174/ajnr.A6707
Fan, E.B.
- LETTEROpen AccessCT Fluid-Blood Levels in COVID-19 Intracranial HemorrhageN.K. Wee, E.B. Fan, K.C.H. Lee, Y.W. Chia and T.C.C. LimAmerican Journal of Neuroradiology September 2020, 41 (9) E76-E77; DOI: https://doi.org/10.3174/ajnr.A6672
Fasen, B.A.
- LETTERYou have accessReply:B.A. Fasen and R.M. KweeAmerican Journal of Neuroradiology September 2020, 41 (9) E75; DOI: https://doi.org/10.3174/ajnr.A6700
Feddal, A.
- InterventionalYou have accessFusion Image Guidance for Supra-Aortic Vessel Catheterization in Neurointerventions: A Feasibility StudyA. Feddal, S. Escalard, F. Delvoye, R. Fahed, J.P. Desilles, K. Zuber, H. Redjem, J.S. Savatovsky, G. Ciccio, S. Smajda, M. Ben Maacha, M. Mazighi, M. Piotin and R. BlancAmerican Journal of Neuroradiology September 2020, 41 (9) 1663-1669; DOI: https://doi.org/10.3174/ajnr.A6707
Fisher, E.
- Adult BrainYou have accessPatterning Chronic Active Demyelination in Slowly Expanding/Evolving White Matter MS LesionsC. Elliott, D.L. Arnold, H. Chen, C. Ke, L. Zhu, I. Chang, E. Cahir-McFarland, E. Fisher, B. Zhu, S. Gheuens, M. Scaramozza, V. Beynon, N. Franchimont, D.P. Bradley and S. BelachewAmerican Journal of Neuroradiology September 2020, 41 (9) 1584-1591; DOI: https://doi.org/10.3174/ajnr.A6742
Fisher, P.G.
- EDITOR'S CHOICEPediatricsYou have accessDeep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional StudyJ.L. Quon, W. Bala, L.C. Chen, J. Wright, L.H. Kim, M. Han, K. Shpanskaya, E.H. Lee, E. Tong, M. Iv, J. Seekins, M.P. Lungren, K.R.M. Braun, T.Y. Poussaint, S. Laughlin, M.D. Taylor, R.M. Lober, H. Vogel, P.G. Fisher, G.A. Grant, V. Ramaswamy, N.A. Vitanza, C.Y. Ho, M.S.B. Edwards, S.H. Cheshier and K.W. YeomAmerican Journal of Neuroradiology September 2020, 41 (9) 1718-1725; DOI: https://doi.org/10.3174/ajnr.A6704
This study cohort comprised 617 children (median age, 92 months; 56% males) from 5 pediatric institutions with posterior fossa tumors: diffuse midline glioma of the pons, medulloblastoma, pilocytic astrocytoma, and ependymoma. There were 199 controls. Tumor histology served as ground truth except for diffuse midline glioma of the pons, which was primarily diagnosed by MR imaging. A modified ResNeXt-50-32x4d architecture served as the backbone for a multitask classifier model, using T2-weighted MRI as input to detect the presence of tumor and predict tumor class. Model tumor detection accuracy exceeded an AUC of 0.99 and was similar to that of 4 radiologists. Model tumor classification accuracy was 92% with an F1 score of 0.80. The model was most accurate at predicting diffuse midline glioma of the pons, followed by pilocytic astrocytoma and medulloblastoma. Ependymoma prediction was the least accurate.